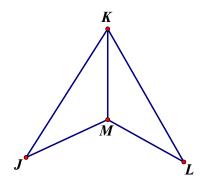
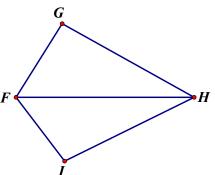

For each problem, do the following:

- a. Show the given information in the diagram (using tick marks to show congruent sides and arcs to show congruent angles)
- b. Show any other congruent parts you notice (from vertical angles, sides shared in common, or alternate interior angles with parallel lines)
- c. Give the postulate or theorem that proves the triangles congruent (SSS, SAS, ASA, AAS, HL)
- d. Finally, fill in the blanks to complete the proof.

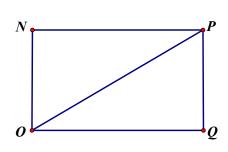

1. Given: $\overline{BC} \cong \overline{DC}$; $\overline{AC} \cong \overline{EC}$ Prove: $\Delta BCA \cong \Delta DCE$

Statements	Reasons
1.	1. Given
2.	2. Vertical ∠s Theorem
3. $\triangle BCA \cong \triangle DCE$	3.

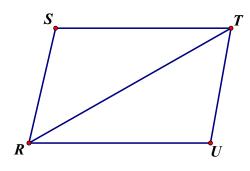

2. Given: $\overline{JK} \cong \overline{LK}$; $\overline{JM} \cong \overline{LM}$ Prove: $\Delta KJM \cong \Delta KLM$

Statements	Reasons
1.	1.
2.	2. Reflexive Prop.
3.	3.

3. Given: $\angle G \cong \angle I$; \overline{FH} bisects $\angle GFI$ Prove: $\triangle GFH \cong \triangle IFH$

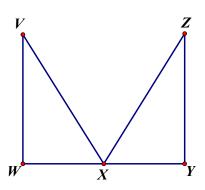

Statements	Reasons
1. $\angle G \cong \angle I$; \overline{FH} bisects $\angle GFI$	1.
2. ∠ <i>GFH</i> ≅ ∠ <i>IFH</i>	2. Def. of
3.	3. Reflexive Prop.
4.	4.

4. Given: $\angle N$ and $\angle Q$ are right angles; $\overline{NO} \cong \overline{PQ}$


Prove: $\triangle ONP \cong \triangle PQO$

Statements	Reasons
1. ∠N and ∠Q are right angles	1.
2. ΔONP and ΔPQO are triangles	2. Def. of right triangle
3.	3. Reflexive Prop.
4. $\overline{NO} \cong \overline{PQ}$	4.
5.	5.

5. Given: $\overline{ST} \parallel \overline{RU}$; $\overline{SR} \parallel \overline{TU}$ Prove: $\Delta SRT \cong \Delta UTR$


Statements	Reasons
1. $\overline{ST} \parallel \overline{RU}$	1.
2.	2. If lines , alt. int. ∠s ≅
3. $\overline{SR} \parallel \overline{TU}$	3.
4. ∠ <i>SRT</i> ≅ ∠ <i>UTR</i>	4.
5.	5.
6.	6.

6. Given: $\angle W$ and $\angle Y$ are right angles; $\overline{VX} \cong \overline{ZX}$; X is the midpoint of \overline{WY}

Prove: $\Delta VWX \cong \Delta ZYX$

Statements	Reasons
1. ∠W and ∠Y are right angles	1.
2.	2. Def. of right triangle
3. $\overline{VX} \cong \overline{ZX}$; X is the midpoint of \overline{WY}	3.
4.	4. Def. of midpoint
5.	5.

