

Math Virtual Learning

Calculus AB

Review of Riemann Sums

May 11, 2020

Lesson: Monday, May 11, 2020

Objective/Learning Target:
Understand the definition of a Riemann Sum
Approximate the area of a plane region

Introduction: Intro to Riemann Sums
Over and Under- estimates

We may struggle to find the exact area, but we can approximate it using rectangles:

These sorts of approximations are called **Riemann sums**, and they're a foundational tool for integral calculus. Our goal, for now, is to focus on understanding two types of Riemann sums: left Riemann sums, and right Riemann sums.

What kind of Riemann sum is described by the diagram?

Choose 1 answer:

- (A) Left Riemann sum
- B Right Riemann sum

What kind of Riemann sum is described by the diagram?

Choose 1 answer:

CORRECT (SELECTED)

Right Riemann sum

Left and right Riemann sums

To make a Riemann sum, we must choose how we're going to make our rectangles. One possible choice is to make our rectangles touch the curve with their top-left corners. This is called a **left Riemann sum**.

Another choice is to make our rectangles touch the curve with their top-right corners. This is a **right Riemann sum**.

Neither choice is strictly better than the other.

Approximate the area between y=h(x) and the x-axis from x=-2 to x=4 using a *right Riemann sum* with *three* equal subdivisions.

Try it.

Choose 1 answer:

- (A) 20 units²
- (B) 26.5 units²
- © 28 units²

Answer

CORRECT (SELECTED)

28 units²

Check

Hide explanation

	First rectangle	Second rectangle	Third rectangle
Width	2	2	2
Height	4	6	4
Area	$2 \cdot 4 = 8$	$2 \cdot 6 = 12$	$2 \cdot 4 = 8$

Then, after finding the individual areas of the rectangles, we'd add them up to get $28~\rm units^2$.

Other Ways of Calculating Area

Area from a Table

Midpoint Sum

Trapezoidal Sum

- 1. Consider the region enclosed between the x-axis and the curve $y = e^x$.
 - a. Use a left Riemann sum approximation with 5 equal subintervals to approximate the area of the region between x = -1 and x = 4. Show your work.

Practice

 Use a midpoint Riemann sum approximation with 5 equal subintervals to approximate the same region. Show your work.

- 2. The rate at which water flows out of a pipe in gallons per hour is given by R(t). Selected values of R(t) are shown in the table below.
 - a. Use a right Riemann sum approximation with 4 equal subintervals to approximate the area underneath R(t) from t = 0 to t = 24.

	(hours)	R(t) (gallons per hour)
	0	9.6
o. What does this area represent?	3	10.4
	6	10.8
	9	11.2
	12	11.4
	15	11.3
	18	10.7
	21	10.2
	24	9.6

Practice Answers

- 1. Consider the region enclosed between the x-axis and the curve $y = e^x$.
 - a. Use a left Riemann sum approximation with 5 equal subintervals to approximate the area of the region between x = -1 and x = 4. Show your work.

$$1(e^{-1}) + 1(e^{\circ}) + 1(e^{\circ}) + 1(e^{2}) + 1(e^{3})$$

= 31.561

 Use a midpoint Riemann sum approximation with 5 equal subintervals to approximate the same region. Show your work.

Practice Answers

- The rate at which water flows out of a pipe in gallons per hour is given by R(t). Selected values
 of R(t) are shown in the table below.
 - a. Use a right Riemann sum approximation with 4 equal subintervals to approximate the area underneath R(t) from t=0 to t=24.

6(10.8)+6(11.4)+6(10.7)	t (hours)	R(t) (gallons per hour)
+ 6 (9.6) = 255 b. What does this area represent?	0	9.6
	3	10.4
	6	10.8
	9	11.2
	12	11.4
	15	11.3
The amount of water	18	10.7
The amount of water that flows out of the	21	10.2
	24	9.6
pipe between t=0 and		
t=24 hours		

Practice

The temperature, in degrees Celsius (°C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

(b)	Approximate the average temperature, in degrees Celsius, of the water			
	over the time interval $0 \le t \le 15$ days by using a trapezoidal			
	approximation with subintervals of length $\Delta t = 3$ days.			

t (days)	W(t) (°C)
0	20
3	31
6	28
9	24
12	22
15	21

Practice

t (minutes)	0	2	5	7	11	12
r'(t) (feet per minute)	5.7	4.0	2.0	1.2	0.6	0.5

The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For 0 < t < 12, the graph of r is concave down. The table above gives selected values of the rate of change, r'(t), of the radius of the balloon over the time interval $0 \le t \le 12$. The radius of the balloon is 30 feet when t = 5. (Note: The volume of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$.)

- (c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_0^{12} r'(t) dt$. Using correct units, explain the meaning of $\int_0^{12} r'(t) dt$ in terms of the radius of the balloon.
- (d) Is your approximation in part (c) greater than or less than $\int_0^{12} r'(t) dt$? Give a reason for your answer.

Answers

(b)
$$\frac{3}{2}(20 + 2(31) + 2(28) + 2(24) + 2(22) + 21) = 376.5$$

Average temperature $\approx \frac{1}{15}(376.5) = 25.1$ °C

Answers

(c)
$$\int_0^{12} r'(t) dt \approx 2(4.0) + 3(2.0) + 2(1.2) + 4(0.6) + 1(0.5)$$

= 19.3 ft
 $\int_0^{12} r'(t) dt$ is the change in the radius, in feet, from $t = 0$ to $t = 12$ minutes.

Units of ft³/min in part (b) and ft in part (c)

Extra Practice

Riemann Sums with Tables

Approximating Area Under a Curve

Textbook Suggested Problems:

Section 4.3 pg. 278-279: 15, 19, 27, 29, 35, 37, 43, 45, 47