

### High School Science Virtual Learning

# Chemistry Stoichiometry April 20, 2020



High School Chemistry Lesson: April 20, 2020

**Objective/Learning Target:** 

Students will continue to practice stoichiometry.



#### Let's Get Started:

- 1. What equality is used to convert between grams and moles?
- 2. What equality is used to convert between moles and moles?
- 3. What equality is used to convert between moles and liters of a gas at STP?



#### Let's Get Started: Answer Key

- What equality is used to convert between grams and moles? 1 mole = Molar Mass grams [From periodic table]
- 2. What equality is used to convert between moles and moles? Mole ratio, from coefficients (e.g. 2 mol CO = 1 mol O<sub>2</sub>
- 3. What equality is used to convert between moles and liters of a gas at STP? 1 mol=22.4 L



#### **Lesson Activity:**

#### **Directions:**

- 1. Watch this video.
- 2. Take notes on the examples while you watch it.



## Practice

Complete the following questions using the information you learned during the lesson activity.



Questions: 
$$C_5H_{12(l)} + 8O_{2(g)} \rightarrow 5CO_{2(g)} + 6H_2O_{(l)}$$

- 1. If 3.5 moles of pentane  $(C_5H_{12})$  react, how many moles of carbon dioxide will be produced?
- 2. What is the mass of 1.25 moles of pentane?
- 3. What mass of water will be produced, if 10.2 L of carbon dioxide are produced at STP?



Once you have completed the practice questions check with the answer key.

- 1. 18 mol CO<sub>2</sub> (17.5 if ignoring sig figs)
- 2.  $90.2 \text{ g C}_5 \text{H}_{12}$
- 3.  $9.84 \text{ g H}_2\text{O}$

Work is shown on the next slide.



| INDEPENDENCE SCHOOL DISTRICT |                                         |                                        |  |                        |                           |
|------------------------------|-----------------------------------------|----------------------------------------|--|------------------------|---------------------------|
|                              | 3.4 mol C <sub>5</sub> H <sub>12</sub>  | 5 mol CO <sub>2</sub>                  |  |                        |                           |
|                              |                                         | 1 mol C <sub>5</sub> H <sub>12</sub>   |  |                        |                           |
|                              | 1.25 mol C <sub>5</sub> H <sub>12</sub> | 72.15 g C <sub>5</sub> H <sub>12</sub> |  |                        |                           |
|                              |                                         | 1 mol C <sub>5</sub> H <sub>12</sub>   |  |                        |                           |
|                              | 10.2 L CQ <sub>2</sub>                  | 1 mol CO <sub>2</sub>                  |  | 6 mol H <sub>2</sub> Q | 18.015 g H <sub>2</sub> O |
|                              |                                         | 22.4 602                               |  | 5 mol CO <sub>2</sub>  | 1 mol H <sub>2</sub> Q    |



#### **More Practice:**

Follow the links below to do more practice.

- 1. This <u>activity</u> will check your answers at the bottom.
- 2. This <u>activity</u> has all types of problems.



# Additional Practice: Click on this <u>link</u> for additional practice.