

High School Science Virtual Learning

Chemistry Limiting Reactants April 27, 2020

High School Chemistry Lesson: April 27, 2020

Objective/Learning Target:

Students will be able to calculate theoretical yields in a limiting reactant problem.

Let's Get Started: $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4H_2O$ 1. How much carbon dioxide will be formed if 12.5 grams of oxygen reacts with 7.2 grams of propane (C_3H_8)?

2. Under normal conditions, which reactant would typically be limiting in this reaction? Under what conditions would the other reactant be limiting?

Let's Get Started: Answer Key

1. How much carbon dioxide will be formed if 12.5 grams of oxygen reacts with 7.2 grams of propane (C_3H_8) ? 10.3 g CO₂ 12.5 g O_2 1 mol O_2 3 mol CO_2 44.009 g CO_2 = 10.3 g CO_2 $31.998 \text{ g O}_2 5 \text{ mol O}_2$ 1 mol CO $_2$ 1 $1 \mod C_3 H_8$ 3 mol CO₂ 44.009 g CO₂ = 22 g CO₂ 7.2 g $C_3 H_8$ 44.097 g $C_{3}H_{8}$ 1 mol $C_{3}H_{8}$ 1 mol CO $_{2}$

Let's Get Started: Answer Key

2. Under normal conditions, $C_{3}H_{8}$ would be the limiting reactant because there is a very large amount of oxygen in any room. You rarely run out of oxygen when you burn something, and this reaction is a combustion reaction.

You could make oxygen the limiting reactant (like Question 1) by performing this reaction in a closed container.

Lesson Activity:

Directions:

1. Watch this video and take notes on the example.

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions: Al + FeCl₃ \rightarrow Fe + AlCl₃

- 3.6 grams of aluminum are put in a container with 9.8 grams of FeCl₃. How many grams of iron can be produced?
- 2. In Question 1, identify the limiting reactant and the excess reactant.
- 3. If 2.5 g of Fe resulted from the reaction, what was the percent yield.

Once you have completed the practice questions check with the answer key.

1. 3.4 g Fe

 3.6 g Al	1 mol Al	1 mol Fe	55.845	g Fe = 7.5 §	g Fe
1 26.982 g Al 1 mol Al 1 mol Fe					
 9.8 g FeCl	3 1 mol	FeCl ₃ 1	1 mol Fe 55.845 g Fe = 3.4 g		e = 3.4 g Fe
1 162.204 g		g FeCl₃ 1 mol FeCl₃		1 mol Fe	

Once you have completed the practice questions check with the answer key.

- 2. FeCl₃ was the limiting reagent. Al was the excess reagent.
- 3. 2.5 g/3.4 g x 100% = 73.5%

More Practice:

Follow the links below to do more practice.

- 1. Limiting Reactants Worksheet #1
- 2. Limiting Reactants Worksheet # 2

Additional Practice: Click on this <u>link</u> for additional practice.