

High School Science Virtual Learning

Chemistry

Electron Configuration and Valence Electrons May 18, 2020

High School Chemistry Lesson: May 18

Objective/Learning Target:

Students will be able to write the electron configuration for various elements and determine the number of valence electrons.

Let's Get Started:

- 1. What is an atom?
- 2. Fill out this chart about subatomic particles.

Particle	Mass	Location	Charge

Let's Get Started: Answer Key

1. What is an atom? Building blocks of matter. The smallest piece of an element that retains that element's properties.

Let's Get Started: Answer Key

2. Fill out this chart about subatomic particles.

Particle	Size	Location	Charge
Proton (p ⁺)	~ 1 amu	Nucleus	+1
Electron (e⁻)	Negligible	Outside Nucleus	-1
Neutron (n ⁰)	~ 1 amu	Nucleus	0

Lesson Activity:

Directions:

1. Watch this <u>video</u> from Melissa Maribel and this <u>video</u> from Brightstorm.

Questions:

- 1. What do the letters in the electron configuration mean?
- 2. What do the numbers in front (coefficients) mean?
- 3. What do the small numbers after the letter (superscripts) mean?
- 4. How do you determine the number of valence electrons?

Answers

- 1. The block of the periodic table that you are counting
- 2. The row of the periodic table you are counting
- 3. The number of electrons in that subshell (this is found by counting the elements in that row and block)
- 4. Looking at the highest coefficient (row number) and adding up the electrons

<u>Notes</u>

This periodic table is color coded to show the various blocks. Remember that the coefficient (row number) is one lower in the d-block.

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

- 1. What is the full electron configuration for fluorine?
- 2. What is the noble gas electron configuration for iodine?
- 3. How many valence electrons does calcium have?
- 4. What is the full electron configuration for arsenic, and how many valence electrons does it have?

Once you have completed the practice questions check with the answer key.

- 1. $1s^22s^22p^5$
- 2. [Kr] $5s^24d^{10}5p^5$
- 3. 1s²2s²2p⁶3s²3p⁶4s² (2 valence electrons)
- 4. $1s^22s^22p^63s^23p^64s^23d^{10}4p^3$ (5 valence electrons)

More Practice:

Follow the links below to do more practice.

- 1. This <u>electron configuration practice</u> has an answer key on the second page.
- 2. Only do the first page of this <u>worksheet</u>. Do not worry about the orbital notations section.

Additional Practice: Click on this <u>link</u> for additional practice. The answer key is on the second page.