
Computer Science Virtual Learning

 HS Computer Science A

May 22nd, 2020

Lesson: Abstract Classes

Objective/Learning Target:

Understanding what Abstract classes are and how to apply
them in Java

If you were creating software that allowed the user to draw rectangles
and ovals by clicking the mouse at a location and then dragging and
releasing to define the width, what classes would you need?

One way to identify the classes you need is to underline the nouns in
the description. This would give you Rectangle and Oval as two
possible classes. Both of these are kinds of simple shapes that can
be defined by two points. So you could create a SimpleShape class
that keeps track of two points and perhaps the color to draw the
shape in.

Could you actually create a SimpleShape object? What would it look
like? How would you draw it? Since we don’t know what a
SimpleShape looks like we can make the class abstract which
means that you can not create any objects of that type.

public abstract class SimpleShape

Abstract Classes

You can’t create a new object of an abstract class. If
you try you will get an error. Run the example below to
see the error.

Abstract Classes Can’t Be Instantiated

What is an abstract class good for if you can’t create any objects from it? You
can use it as a parent class for subclasses.

Abstract classes often have at least one abstract method (a method that has
the keyword abstract in the declaration and no method body), but they don’t
have to. Abstract classes can have constructors, fields, and methods with
bodies (non-abstract methods). If you create a class with at least one abstract
method, the class has to be declared to be an abstract class.

An abstract SimpleShape class could have constructors and fields to track the
points and methods that calculate the width and height of the shape. The only
method that has to be abstract is the draw method, since we don’t know how
to draw a SimpleShape .

Abstract classes are typically used when you want to put some data and/or
behavior in a parent class, but at least one method needs to be abstract and
overridden by the child class(es). The SimpleShape class can have an
abstract draw method and then the children classes can specify what draw
does.

Abstract Classes Exist to be Subclassed

An interface in Java is a special type of abstract class that can only contain public abstract methods (every method is assumed to be public
and abstract even if these keywords are not specified) and public class constants. List is an interface in Java. Interfaces are declared using
the interface keyword. One interface can inherit from another interface.

public interface Checker
{
 boolean check (Object obj);
}

The code above declares an interface called Checker that contains a public abstract method called check that returns true or false. Classes
that implement this interface must provide the body for the check method.

Another example of an interface in Java is the Iterator interface. It is used to loop through collection classes (classes that hold groups of
objects like ArrayList).

Inheritance and Interfaces

The purpose of an interface is to separate what you want a type to be able to do (defined by the method signatures) from how it does that. This
makes it easy to substitute one class for another if they both implement the same interface and you have declared the variable using the
interface type. The List interface defines what a class needs to be able to do in order to be considered a List. You have to be able to add an
item to it, get the item at an index, remove the item from an index, get the number of elements in the list, and so on. There are several classes
that implement the List interface. You only have to know about ArrayList for the exam, which is a class that implements the List interface
using an array.

What is the Purpose of an Interface?

In Java, you can sort objects of any class that implements the
Comparable interface. The Comparable interface just specifies the
int compareTo(T o) method which will return a negative number if
the current object is less than the passed one, 0 if they are equal, and
a positive number if the current object is greater than the passed one.
How do you compare two objects of any class? It really depends on
both the class and the context.

One common misconception is that compareTo returns -1, 0, or 1
but that is wrong. It returns a negative number (if less than), 0, or a
positive number (if greater). Be careful in conditionals to use < 0 to
test for the object it is called on being less than the passed object,
== 0 to test for equals, and > 0 to test for the object it is called on
being greater than the passed object.

The String class implements the Comparable interface. Let’s see
what is actually returned when you compare strings.

The Comparable Interface

Go to: https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooAbstract.html

https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooInheritanceAndInterfaces.html

https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooComparable.html

For More Resources and to Check Answers

https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooAbstract.html
https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooInheritanceAndInterfaces.html
https://runestone.academy/runestone/books/published/apcsareview/OOBasics/ooComparable.html

