

Engineering

Series Circuits April 10, 2020

9-12/ Engineering Series Circuits: [April 10, 2020]

Objective/Learning Targets:

- 1. Discuss basic electricity relationships
- 2. Build circuits from schematic drawings
- 3. Understand the attributes of Ohm's law in series circuits
- 4. Calculate Ohm's law in series circuits

Learning tools for today

- Use this link and press play to enter a free simulator.
- Select intro and build the simple series circuit included in this lesson. You will need to build circuits using a battery, light bulbs, and wires.
- Click the selection in the top right for labels and values.
- You will also be calculating Ohm's law to understand how attributes of the law apply in series circuits.

Relationships of Electrical Properties

Ohm's Law

- Ohm's Law is the mathematical relationship between current, voltage, and resistance.
- If you know two of the three quantities, you can solve for the third quantity.

Concept	Measurement	Symbol	Formula
Voltage	Volts	V	V
Current	Amperes	А	I.
Resistance	Ohms	Ω	R

Series circuits

- In simulation you can toggle the picture diagram to schematics with the button on the bottom right.
- Do you see the difference in the symbols?
- Schematics are used to simplify circuit drawings.

Picture Symbols

Schematic Symbols

Series circuit schematics

• Schematic symbols are used to represent components in circuit drawings.

Series circuits

• Build this circuit, turn on labels and values, use sliders to change the values to match the schematic, ignore the k in ohms. Each version is the same circuit. We can now make some observations.

Investigate Series circuits

- Use the multi-meter to make measurements around each resistor as shown.
- What are you measuring for?
- What did you notice?

- Use the ammeter to make measurements between each resistor as shown.
- What are you measuring for?
- What did you notice?

Series circuits Rules

- **Current**: The amount of current is the same through any component in a series circuit.
- Resistance: The total resistance of any series circuit is equal to the sum of the individual resistances.
- Voltage: The supply voltage in a series circuit is equal to the sum of the individual voltage drops.

Series Circuit Rules and Calculations

- Ohm's law in series circuits
- Components in a series circuit share the same current:
 - $I_{Total} = I_1 = I_2 = ... I_n$
- The total resistance in a series circuit is equal to the sum of the individual resistances:
 - RTotal = $R_1 + R_2 + ... R_n$
- Total voltage in a series circuit is equal to the sum of the individual voltage drops *Kirchoff's Voltage Law*
 - $V_{Total} = V_1 + V_2 + ... En$
- <u>Additional Resources</u>

- Step 1
- Identify all knows and unknowns
- All known values are in bright blue
- All unknown values need to be calculated for.
- T = total, R1= Resistor etc., R_T =Resistance total, I_T = Current total

<i>V_T</i> 9V	V _{R1}	V _{R2}	V _{R3}
I_T	I _{R1}	I _{R2}	I _{R3}
R_T	R ₁ 3Ω	R ₂ 10Ω	R ₃ 5Ω

- Step 2
- In series circuits Resistance adds
- $R_T = R_1 + R_2 + R_3$
- $R_T = 3\Omega + 10\Omega + 5\Omega$
- $R_T = 18\Omega$

<i>V</i> _T 9V	V _{R1}	V _{R2}	V _{R3}
I _T	I _{R1}	I _{R2}	I _{R3}
R_T 18 Ω	R ₁ 3Ω	R ₂ 10Ω	R ₃ 5Ω

- Step 3
- Calculate the easiest unknown, Current Total
- $I_T = V_T 9 \vee / R_T 18 \Omega$
- *I_T*=.50A

<i>V</i> _T 9V	V _{R1}	V _{R2}	V _{R3}
<i>I_T</i> .50A	<i>I_{R1}</i> .50A	I_{R2} .50A	I _{R3} .50A
R_T 18 Ω	R ₁ 3Ω	R ₂ 10Ω	R ₃ 5Ω

- Step 4
- Calculate for the voltage of each resistor using $\bigvee = IR$
- Check your work with the simulation after you finish
- All values will check themselves using Ohm's law.
- IF you add all Resistor voltages they equal Voltage total.

<i>V</i> _T 9V	<i>V</i> _{<i>R</i>1} 1.5V	<i>V</i> _{<i>R</i>2} 5V	<i>V_{R3}</i> 2.5V
<i>I_T</i> .50A	<i>I_{R1}</i> .50A	I_{R2} .50A	I_{R3} .50A
R_T 18 Ω	R ₁ 3Ω	R ₂ 10Ω	R ₃ 5Ω

- Your turn
- Solve for all of the unknown circuit values.
- Follow the steps to find each value.
- Use the simulation to check your work.

V _T	V _{R1}	V _{R2}	V _{R3}
I _T	I _{R1}	I _{R2}	<i>I</i> _{<i>R</i>3}
R _T	<i>R</i> ₁	R ₂ 1	<i>R</i> ₃

