PLTW Engineering

10-12/Advanced Parallel Circuit Calculations

April 22, 2020

10-12/DE
 Lesson: 4/22/2020

Objective/Learning Target: Students will be able to calculate unknown resistance, current, or voltage values in a PARALLEL circuit with 3 or more components.

Review

In the previous lesson, we learned how to use Ohm's law to calculate unknown values in a very basic circuit.

However circuits have evolved over time and have become increasingly complex.

The following slides will show you how to calculate unknown resistance, current, or voltage values in a circuit with 3 or more components.

Ohm's Law Review

Ohms law review

$$
\begin{aligned}
& V=I \times R \\
& I=V / R \\
& R=V / I
\end{aligned}
$$

Ohm's Law Total Resistance in Parallel

In the circuit shown to the right, we see there are 3 resistors in PARALLEL. In a parallel circuit, the reciprocal of the reciprocals of the resistor values are added together to determine the total resistance.

$$
\mathrm{R}_{\mathrm{T}}=\frac{1}{\frac{1}{5.6 \mathrm{k} \Omega}+\frac{1}{680 \Omega}+\frac{1}{8.2 \mathrm{k} \Omega}}
$$

Ohm's Law Total Resistance in Parallel

Ohm's Law Total Current

With the total resistance calculated, we can now use Ohm's law to find the remaining unknown values.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=3.311 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{V} / \mathrm{R} \\
& \mathrm{I}_{\mathrm{T}}=9 \mathrm{~V} / 2,170 \Omega \\
& \mathrm{I}_{\mathrm{T}}=2.72 \mathrm{~mA}
\end{aligned}
$$

Ohm's Law Advanced

With the total resistance and current calculated, we can calculate the current drops at each resistor. This is important when designing a circuit because it can help determine if a larger power source is needed.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=3.311 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{T}}=2.72 \mathrm{~mA}
\end{aligned}
$$

Ohm's Law Current Drops

$$
\begin{aligned}
& I=V / R_{1} \\
& I=9 \mathrm{~V} / 5.6 \mathrm{k} \Omega \\
& I_{\mathrm{R} 1}=1.6 \mathrm{k} \Omega
\end{aligned}
$$

$$
I=V / R_{2}
$$

$$
I=9 \mathrm{v} / 680 \Omega
$$

$$
I_{R 2}=0.013
$$

$$
I=V / R_{3}
$$

$$
\mathrm{I}=9 \mathrm{~V} / 8.2 \mathrm{k} \Omega
$$

$$
I_{R 3}=1.09
$$

Kirkchoff's Current Law

Now lets use Kirkchoff's current law we learned in the previous lesson to check our work. Remember, the total of all 3 current drops should add back up to current total - in this case approximately 2.72 mA .

$$
\begin{aligned}
I_{\mathrm{R} 1} & =1.6 \mathrm{~mA} \\
+I_{\mathrm{R} 2} & =0.013 \mathrm{~mA} \\
+I_{\mathrm{R} 3} & =1.09 \mathrm{~mA}
\end{aligned}
$$

$$
+\mathrm{I}_{\mathrm{R} 2}=0.013 \mathrm{~mA}=2.703 \mathrm{~mA}
$$

Ohm's Law - Parallel Practice Problem

Here is a practice problem to try on your own. Remember the things you will need to calculate are as follows: I_{T}

1. Resistance total (parallel) - R_{T}
2. Current total - I (mili Amps)
3. Current drops at each resistor $I_{R 1}, I_{R 2}, I_{R 3}$

4. Check your Current drops using Kirkchoff's current law

Helpful links

Youtube video - Solving a Parallel circuit tutorial

All about circuits guide to solving parallel circuits

