

PLTW Engineering

10-12/Advanced Series Circuit

Calculations

April 23, 2020

10-12/DE
 Lesson: 4/23/2020

Objective/Learning Target: Students will be able to calculate unknown resistance, current, or voltage values in a SERIES circuit with 3 or more components.

Review

In the previous lesson, we learned how to use Ohm's law to calculate unknown values in a very basic circuit.

However circuits have evolved over time and have become increasingly complex.

The following slides will show you how to calculate unknown resistance, current, or voltage values in a circuit with 3 or more components.

Ohm's Law Review

Ohms law review

$$
\begin{aligned}
& V=I \times R \\
& I=V / R \\
& R=V / I
\end{aligned}
$$

Ohm's Law Resistance in Series

In the circuit shown to the right, we see there are 3 resistors in SERIES. In a series circuit, the resistors are added together to determine the total resistance.

820Ω
1200Ω
$+150 \Omega$
$2,170 \Omega$ or $2.17 \mathrm{k} \Omega$

Ohm's Law Total Current

With the total resistance calculated, we can now use Ohm's law to find the remaining unknown values.

$$
\mathrm{R}_{\mathrm{T}}=2.17 \mathrm{k} \Omega
$$

$$
I_{T}=V / R
$$

$$
\mathrm{I}_{\mathrm{T}}=9 \mathrm{~V} / 2,170 \Omega
$$

$$
\mathrm{I}_{\mathrm{T}}=4.14 \mathrm{~mA}
$$

Ohm's Law Advanced

With the total resistance and current calculated, we can calculate the voltage drops at each resistor. This is important when designing a circuit because it can help determine if a larger power source is needed.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=2.17 \mathrm{k} \Omega \\
& \mathrm{I}_{\mathrm{T}}=4.14 \mathrm{~mA}
\end{aligned}
$$

Ohm's Law Voltage Drops

$$
\begin{aligned}
& V=I_{T} \times R_{1} \\
& V=4.14 \mathrm{~mA} \times 820 \Omega \\
& V_{R 1}=3.39 \mathrm{~V}
\end{aligned}
$$

$$
V=I_{T} \times R_{2}
$$

$$
\mathrm{V}=4.14 \mathrm{~mA} \times 1.2 \mathrm{k} \Omega
$$

$$
V_{R 2}=4.99 \mathrm{~V}
$$

$$
V=I_{T} \times R_{3}
$$

$$
V=4.14 \mathrm{~mA} \times 150 \Omega
$$

$$
V_{R 3}=0.621 \mathrm{~V}
$$

Kirkchoff's Voltage Law

Now lets use Kirkchoff's voltage law we learned in the previous lesson to check our work. Remember, the total of all 3 voltage drops should add back up to source voltage - in this case 9 v .

$$
\begin{aligned}
V_{R 1} & =3.39 \mathrm{~V} \\
+V_{R 2} & =4.99 \mathrm{~V} \quad=9.001 \mathrm{~V} \\
+V_{R 3} & =0.621 \mathrm{~V}
\end{aligned}
$$

$$
\frac{\underline{\square}}{\bar{T}} 9 \mathrm{~V}
$$

Ohm's Law - Series Practice Problem

Here is a practice problem to try on your own. Remember the things you will need to calculate are as follows:

1. Resistance total (series) - R_{T}
2. Current total - I_{T} (mili Amps)
3. Voltage drops at each resistor

$$
V_{R 1}, V_{R 2}, V_{R 3}
$$

4. Check your Voltage drops using Kirkchoff's voltage law

Helpful links

Youtube video - Series Circuit Calculation tutorial

All about circuits - Series Circuit Calculation exampels

